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Abstract Successful genome mining is dependent on

accurate prediction of protein function from sequence. This

often involves dividing protein families into functional

subtypes (e.g., with different substrates). In many cases,

there are only a small number of known functional sub-

types, but in the case of the adenylation domains of non-

ribosomal peptide synthetases (NRPS), there are [500

known substrates. Latent semantic indexing (LSI) was

originally developed for text processing but has also been

used to assign proteins to families. Proteins are treated as

‘‘documents’’ and it is necessary to encode properties of

the amino acid sequence as ‘‘terms’’ in order to construct a

term-document matrix, which counts the terms in each

document. This matrix is then processed to produce a

document-concept matrix, where each protein is repre-

sented as a row vector. A standard measure of the closeness

of vectors to each other (cosines of the angle between

them) provides a measure of protein similarity. Previous

work encoded proteins as oligopeptide terms, i.e. counted

oligopeptides, but used no information regarding location

of oligopeptides in the proteins. A novel tokenization

method was developed to analyze information from mul-

tiple alignments. LSI successfully distinguished between

two functional subtypes in five well-characterized families.

Visualization of different ‘‘concept’’ dimensions allows

exploration of the structure of protein families. LSI was

also used to predict the amino acid substrate of adenylation

domains of NRPS. Better results were obtained when

selected residues from multiple alignments were used

rather than the total sequence of the adenylation domains.

Using ten residues from the substrate binding pocket per-

formed better than using 34 residues within 8 Å of the

active site. Prediction efficiency was somewhat better than

that of the best published method using a support vector

machine.
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Introduction

The rapid progress in DNA sequencing technology is

resulting in many new genome sequences. However,

characterization of proteins or secondary metabolites from

a particular strain still requires considerable effort. Genome

mining aims to bridge the gap between DNA sequences

and laboratory experiments by using bioinformatics to

focus experiments on a limited number of interesting tar-

gets rather than using a random screening approach.

Effective genome mining requires accurate identification of

protein function from the sequence. In most cases, hidden

Markov model profiles [6] can assign proteins to a family,
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but the exact function of the encoded protein remains

unknown; many families have subfamilies with different

substrates or other properties. Often, there is only a small

number of different known subfamilies, and methods have

been developed to identify amino acid residues and predict

the subfamily [7, 8].

Predicting chemical structures of secondary metabolites

from DNA sequences of their synthesis genes is a difficult

problem, as the synthesis pathways often involve many

reactions, all of which need to be accurately predicted.

Most progress has been made for modular biosynthetic

clusters: polyketide synthases (PKS), nonribosomal peptide

synthetases (NRPS), and mixed clusters containing both

PKS and NRPS modules. These modules synthesize their

products in successive steps, and each step is carried out by

a different module of the enzyme. It is usually assumed that

the modules function independently of each other so that

the chemical structure of the product can be predicted by

predicting the function of each module.

In PKS clusters, substrate specificity is determined by

the acyl transferase (AT) domain of each extender module.

There are five known substrates, which can be predicted

well by using amino acid fingerprints of specificity-deter-

mining residues [14]. Despite the limited number of sub-

strates, PKS modules exhibit a much larger repertoire of

extension reactions because of the presence of reduction

domains. There are four possible degrees of reduction and

different stereochemistries encoded by the reduction

domains. The program ClustScan was developed to inte-

grate the analysis of AT-domain specificity with reduction

domain functions and to predict chemical structures of

modular PKS products [15].

In contrast to modular PKS clusters, most diversity in

NRPS clusters is encoded by substrate choice. The ade-

nylation domains (A) choose the specific amino acid to

incorporate at each elongation reaction, but the problem of

predicting substrate is difficult, because there is a large

number of known substrates: *500 [16]. An important

step in predicting substrates of A domains was the identi-

fication of eight or ten critical binding-pocket residues,

which correlate well with substrate specificity [2, 14].

However, there are problems in using such information for

substrate prediction when there are a large number of

potential substrates. In particular, it is difficult to handle

sequences, which do not have a precise match in the

training data. This situation prompted an alternative

approach based on support-vector machines (SVM). A set

of 34 amino acid residues was identified near the active

center of A domains and a coding scheme developed based

on their physicochemical properties [12]. The initial

approach could only assign amino acids to classes of amino

acids, but refinement of the approach also allowed pre-

diction of specific amino acids [13]. As SVMs are designed

to give a binary split of data sets, it was necessary to use

several splits to achieve good results.

A term-document matrix was constructed using tokens

as ‘‘terms’’ and proteins as ‘‘documents’’. Latent semantic

indexing (LSI) was initially developed for analyzing sets of

documents [4]. A term-document matrix is constructed that

counts how often each word is present in each document of

a collection. A standard theorem of linear algebra shows

that the matrix can be decomposed into a product of three

matrices (singular-value decomposition). The middle

matrix is a diagonal matrix with the singular values in

decreasing order, which can be interpreted as ‘‘concepts,’’

with the size of the value corresponding to the ‘‘signifi-

cance’’ of the concept. In LSI, only the largest of the

singular values are retained (typically, *100). This is

designed to reduce background noise and computational

burden. The third matrix, the document-concept matrix, has

rows corresponding to the documents, i.e. document vec-

tors. Similarity of the vectors (often measured using the

standard measure of the cosine of the angle between them)

indicates that the documents are related. If a suitable

coding is used, proteins can be viewed as documents

defined by their amino acid sequences. LSI has been used

to assign proteins to families [3]. These investigations used

counts of single amino acids, dipeptides, and tripeptides as

‘‘terms’’. Generally, the best results were with tripeptides,

where 8,000 combinations are possible. This approach uses

counts of peptides but not their position in the protein.

Although this approach loses information, it may have

advantages for families of distant proteins, where multiple

alignment is difficult.

This paper examines the use of LSI for assigning pro-

teins to subfamilies. We wanted to incorporate information

from multiple alignments, so we developed a new method

of constructing terms based on tokenization of residues in

multiple alignments. Initially, the method was applied to

several well-characterized families with two subfamilies.

Subsequently, the method was used to predict substrate

specificities of A domains.

Materials and methods

Protein sequences

Nucleotidyl cyclase, protein kinase, lactate/malate (LDH/

MDH) dehydrogenase, and ketoreductase (KR) sequences

were as in Goldstein et al. [7]. The AT domain sequences

were extracted from the ClustScan database [5]. The 8 Å

sequences (34 amino acid residues), binding-pocket

sequences (ten amino acid residues), and truncated sequen-

ces containing active site residues (136–150 amino acid

residues) from 397 NRPS A domains were downloaded from
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Rausch et al. [12] (supplementary material). Accession

numbers for protein sequences containing A domains were

downloaded from the same source and used to retrieve pro-

tein sequences from the National Center for Biotechnical

Information (NCBI) GenBank database [11]. Complete

A-domain sequences were defined using HMMER version

3.0 [6] with a specially generated profile.

LSI

LSI was carried out using MATLAB� [10] with the Bio-

informatics Toolbox. Term-document matrices were con-

structed using protein sequences as documents. In some

cases, mono-, di- and tri-peptides were used as ‘‘terms,’’ as

in Couto et al. [3]. In the case of using tokens as terms,

multiple alignments of the proteins were constructed with

Clustal X2 version 2.1 [9] using default settings. The

tokens were generated by combining the amino acid single-

letter code with the column number in the multiple align-

ment (e.g., an alanine residue at position 17 would be

tokenized as ‘A17’). In some cases, the log entropy global

weighting function was used to modify the term-document

matrix. The MATLAB function svd was used to perform a

full singular value decomposition of the term-document

matrix. Singular values were selected with which to choose

the number of dimensions to use for LSI, with a relative

variance criterion: the singular value Si is included if:

S2
iP
S2

i

[
0:7

n

where n is the number of protein sequences. The svds

function was used to calculate a decomposition with

reduced dimension, i.e., LSI. Two- and three-dimensional

projections of the document-concept matrix were viewed

using MATLAB.

A test protein was processed in the same way as proteins

in the term-document matrix. The resulting vector was

processed using the folding-in method to produce a

pseudovector [4]. Cosines of the angle between the

pseudovector and each document vector in the document-

concept matrix were calculated, and the functional subtype

of the protein with the highest score was used to predict the

subtype of the test protein.

Statistics for A-domain prediction

Statistical measures were as in Röttig et al. [13]. For each

amino acid substrate, the number of true positives (TP),

false positives (FP), and false negatives (FN) were calcu-

lated. Precision was calculated as TP/(TP ? FP); recall

was calculated as TP/(TP ? FN). The F measure is the

harmonic mean of precision and recall.

BLAST analysis

The Basic Local Alignment Search Tool Plus

(BLAST?) package [1] was used. BLAST databases of

complete A domains, truncated A domains, and extracted

binding-pocket residues were constructed and queried with

the complete set of corresponding sequences. BLAST

reports were processed in MATLAB to generate the best

hit, which was used to predict the amino acid substrate of A

domains.

Results

Protein families with two functional subtypes

Applicability of LSI to predict functional subtypes was

tested on five different protein families, each with two

functional subtypes. We used a novel tokenization method

to generate terms, which starts with a multiple sequence

alignment. Tokens are constructed in the following way: the

code corresponding to the amino acid was combined with

the column number in the multiple alignment; e.g., if the

amino acid residue in column 17 of the multiple sequence

alignment was an alanine, the token would be ‘A17’. The

term-document matrix was constructed by using tokens as

terms and proteins as documents. A standard log-entropy

global weighting scheme was used to modify the term-

document matrix. It was then used for LSI, with dimension

reduction determined by a standard relative variance crite-

rion (this resulted in 28–81 dimensions, depending on the

protein family). Prediction accuracy was tested using a

‘‘leave-one-out’’ test, i.e., a series of LSI matrices were

constructed, with each lacking one protein. A pseudovector

corresponding to the omitted protein was then generated

and compared to vectors for all other proteins by calculating

the cosine of the angle between them. The closest vector

(i.e., the highest cosine value) was used to predict the

substrate. Table 1 shows that LSI provides good subfamily

prediction: as with several other methods [7, 8], it gives

almost perfect prediction of nucleotidyl cyclase substrates,

distinguishes between tyrosine and serine/threonine kina-

ses, and allows good prediction of lactate and malate

dehydrogenases. It also provides a comparable performance

on the other two families.

Proteins correspond to documents in the LSI analysis

and are present in a document-concept matrix. LSI ranks

the concepts in order of singular values associated with

them, i.e., signal strength in the data. It is possible to

explore whether concepts correspond to interesting differ-

ences between members of the families by viewing specific

dimensions (i.e., components of proteins in the document-

concept matrix). Fig. 1 shows such visualization for the
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kinase and dehydrogenase families in two- and three

dimensions, taking the first three dimensions corresponding

to the highest singular values. It can be seen that much of

the kinase family separation is achieved in the second

dimension (value on the Y axis in Fig. 1a). In three

dimensions, the serine–threonine kinases seem to split into

two clusters. In the case of dehydrogenases, the MDH

subfamily is split into three clusters, one of which is not

well separated from the LDH subfamily in the first three

dimensions (Fig. 1 c, d). However, Table 1 shows that

separation is achieved when all 56 dimensions are used.

Prediction of A-domain substrates

A collection of 397 A-domain sequences [12] representing

47 different substrate specificities was used to test the

applicability of LSI for predicting substrate specificity.

Prediction precision was evaluated using a ‘leave-one-out’

test. This was done for all 383 domains, the specificity of

which was present at least twice in the collection. These

consisted mostly of bacterial sequences (348/383), with

most of the rest being fungal sequences. Initially, all

domain sequences were used. Apart from the tokenization

method described above, we also used mono-, di- and tri-

peptides, as in Couto et al. [3]. The percentage of domains

with a correct prediction was calculated. The tokenization

method was slightly better than the tripeptide method

(Table 2), and dipeptides and monopeptides were consid-

erably worse. We also compared these results by con-

structing a BLAST database of A-domain sequences, with

the best BLAST hit used as a predictor. This showed that

BLAST was marginally better than LSI methods (Table 2).

Table 1 Summary of results for specificity prediction of five different protein families with two substrate specificities [7, 8]

Protein family This paper Goldstein et al. [7]. Hannenhalli et al. [8]

Nucleotidyl cyclases 4/75 0/75 0/72

Protein kinases 2/215 0/215 0/293

Malate/lactate dehydrogenases 6/183 4-6/183 0/103

Ketoreductase domains 12/72 9-20/72

Acyl transferase domains 25/610 2-5/181

In each case, the number of false predictions (numerator) and the total number of proteins used (denominator) are given. Results are compared

with those of two published papers

Fig. 1 Protein families using

projections in the two or three

dimensions corresponding to the

largest singular values. a,

b Protein kinases: serine–

threonine kinases (red) and

tyrosine kinases (green). c,

d Malate and lactate

dehydrogenases (red and green,

respectively)
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A-domain sequences are about 400 amino acids long on

average. Stachelhaus et al. [14] found ten residues around

the binding pocket, which are important for determining

substrate specificity. To reduce noise, we also used trun-

cated A-domain sequences, which spanned these ten resi-

dues; these truncated sequences are 136–150 residues long.

When only these residues are used, all methods gave

improved prediction (Table 2).

When we used LSI with the tokenization method

restricted to the ten binding-pocket residues, there was an

89 % prediction accuracy, whereas the tripeptide coding

only gave an 85 % accuracy. Challis et al. [2] used BLAST

with eight critical binding-pocket residues to predict sub-

strate specificity. The ten binding-pocket residues were

used for such a BLAST analysis and gave a 79 % predic-

tion accuracy. We also used 34 residues, which are within

8 Å of the active site [12] for LSI analysis using tokeni-

zation. However, these gave lower prediction accuracy

(87 %) than the ten binding-pocket residues. Most

A-domain sequences are bacterial (348/383). Bacterial and

fungal specificities were predicted with 89 % and 85 %

accuracy, respectively. As the number of fungal sequences

is low and any differences in accuracy are not large, bac-

terial and fungal sequences were treated together for

detailed analysis.

A detailed analysis of the prediction for each amino acid

substrate was carried out. Table 3 shows the results for

each amino acid substrate used by Röttig et al. [13]; this

corresponds to 364 of the 397 A domains. Recall measures

the proportion of A domains for each amino acid substrate

correctly predicted; i.e., recall will be low if the method

does not recognize the correct substrate. Precision mea-

sures the proportion of A domains predicted to use a par-

ticular substrate and that actually use the substrate; i.e.,

precision will be low if there are many false predictions of

the substrate. In most cases, recall and precision are similar

in value. In the case of isovaline (IVA), a rare amino acid

incorporated by some fungal A domains, recall is 1.0

whereas precision is only 0.5; the seven cases of A domains

with IVA substrate were all correctly predicted, but there

were also seven other domains incorrectly predicted as

IVA (two ALA, one GLY, one LEU, one SER, two VAL).

In comparison, the SVM method [13] with the same seven

IVA A domains had lower recall (0.73) but better precision

(0.93). The F measure is the harmonic mean of recall and

precision and is a convenient single measure of prediction

quality. Table 3 shows a comparison of LSI results with the

SVM method of Röttig et al. [13]. The average value of the

F measure is 0.87, which is better than the value of 0.81

reported by Röttig et al. [13].

The A-domain prediction was implemented as a web-

based program (URL bioserv7.bioinfo.pbf.hr/LSIpredic-

tor). The sequence can be pasted into a window, and the

program shows the distance of the A domain being queried

to those of known substrates. This not only gives a pre-

diction but allows the user to assess the quality of the

prediction.

Discussion

LSI has been used successfully to assign proteins to protein

families [3]. In this study, we explored the possibility of

using LSI to distinguish functional subtypes of a family.

We wanted to include information from multiple align-

ments, so we devised a simple tokenization scheme. Ini-

tially, five well-characterized families with two subtypes

were studied. LSI successfully predicted a subtype, with

similar performance to other methods. In all these cases,

LSI was used with standard parameters; it is usually pos-

sible to obtain small gains in performance by optimizing

the weighting scheme and the number of dimensions used.

With LSI, it is possible to visualize separation of members

of a protein family in two or three dimensions and to

choose different dimensions for viewing (Fig. 1). This

offers scope for exploring family clustering with the aim of

discovering new properties. The dimensions correspond to

concepts in text processing, but their significance in a

protein sequence concept is almost unexplored. In the

context of genome mining, it is possible that members of a

family, which are not closely clustered with well-studied

proteins, will prove to have interesting novel properties.

NRPS A domains offer an interesting system for

testing LSI, because there are large numbers of sub-

strates (*500; [16]). We used 397 well-characterized A

domains [12]. Whole sequences of the domains are about

400 amino acids long, and we also used shorter truncated

sequences (136–150 amino acids long) containing bind-

ing-pocket residues [14]. Tokenization coding performed

slightly better than the tripeptide coding shown in Couto

et al. [3], and truncated sequences gave improved pre-

diction compared with whole sequences, probably

Table 2 Prediction of A-domain substrates from whole and truncated

sequences

Method Accuracy (%)

Whole A domain Truncated A domain

LSI tokenization 84 87

LSI tripeptide 82 87

LSI dipeptide 76 83

LSI monopeptide 49 69

BLAST 85 87

LSI latent semantic indexing, BLAST Basic Local Alignment Search

Tool
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because there was less noise. However, LSI did not

perform better than a simple BLAST analysis. We

therefore decided to use residues, which are closely

associated with the active site. The binding pocket was

defined by ten residues, which were important for sub-

strate selection [14]. There were also 34 residues, which

were chosen as lying within 8Å of the active site [12].

LSI performed better with the ten binding-pocket resi-

dues than with the 34, 8-Å-distance residues. This is in

contrast to results with SVMs, where the 8-Å residues

performed better [12, 13]. Most A domains (348/383)

were bacterial. However, specificity prediction of fungal

domains was only slightly worse than that of bacterial

domains (85 % vs 89 %, respectively). It is likely that

using a larger training data set of A domains with more

fungal sequences would lead to improved prediction

results. A detailed comparison of prediction quality with

those of Röttig et al. [13] showed that LSI performed

slightly better than SVMs (Table 3). Thus, LSI is the

most accurate method currently available for predicting

substrate specificities of A domains. As NRPS clusters

often contain many modules, even small improvements

in predicting single modules can make a significant

difference to predicting the final product.

A major advantage of the LSI approach is that it is easy

to add further substrates to the prediction procedure. It is

only necessary to align sequences and recalculate matrices.

With SVMs, it is necessary to redefine sequences of binary

splits to be used when new substrates are added. In the LSI

approach, the cosine of the angle between vectors gives a

measure of how close the predicted domain is to a domain

of known substrate. This gives information about the

quality of prediction, as low values indicate no close rel-

atives and an increased risk of an FP prediction. This

information is likely to be important in genome mining. In

some cases, it might be important for particular amino

acids to be present in the compounds of interest so that

information about quality of prediction would allow some

clusters to be rejected. Alternatively, the presence of an A

domain with a low quality of prediction might indicate the

presence of a rare amino acid and the possibility of a

compound with novel properties.

The tokenization scheme used here is simple but could

be supplemented by further tokens. For instance, it would

Table 3 Prediction efficiency

of substrate specificities of A

domains

For each amino acid substrate,

the number of true positives

(TP), false positives (FP) and

false negatives (FN) were

calculated: recall = TP/

(TP ? FN), precision = TP/

(TP ? FP). The F measure is

the harmonic mean of precision

and recall. F-measure values

from Röttig et al. [13] are given

as a comparison

Substrate Recall Precision F measure F measure, Röttig et al. [13]

2-amino-adipic acid (AAD) 1.00 1.00 1.00 1.00

Alanine (ALA) 0.82 0.90 0.86 0.88

Arginine (ARG) 0.80 1.00 0.89 0.83

Asparagine (ASN) 0.93 1.00 0.96 0.94

Aspartic acid (ASP) 0.83 0.91 0.87 0.70

b-hydroxy-tyrosine (BHT) 1.00 1.00 1.00 0.72

Cysteine (CYS) 1.00 0.96 0.98 1.00

2,3-dihydroxy-benzoic acid (DHB) 0.93 0.88 0.90 0.95

3,5-dihydroxy-phenyl-glycine (DHPG) 1.00 1.00 1.00 0.94

Glutamine (GLN) 1.00 0.80 0.89 0.69

Glutamic acid (GLU) 0.92 0.92 0.92 0.70

Glycine (GLY) 0.83 1.00 0.91 0.91

4-hydoxy-phenyl-glycine (HPG) 0.95 0.90 0.92 0.97

Isoleucine (ILE) 1.00 0.92 0.96 0.92

Isovaline (IVA) 1.00 0.50 0.67 0.81

Leucine (LEU) 0.81 1.00 0.89 0.78

Lysine (LYS) 0.80 1.00 0.89 0.40

Ornithine (ORN) 1.00 0.83 0.91 0.93

Phenylalanine (PHE) 0.45 0.50 0.48 0.69

Pipecolic acid (PIP) 0.60 1.00 0.75 0.70

Proline (PRO) 0.75 0.86 0.80 0.76

Serine (SER) 0.95 0.95 0.95 0.96

Threonine (THR) 0.83 0.95 0.89 0.95

Tryptophan (TRP) 0.67 1.00 0.80 0.32

Tyrosine (TYR) 0.71 0.63 0.67 0.70

Valine (VAL) 0.93 0.89 0.91 0.80
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be possible to add tokens in which groups of amino acids

with similar properties are given the same label (e.g., for

charge or bulk).
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